Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 902: 166409, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37597537

ABSTRACT

Deep subsurface stimulation processes often promote fluid-rock interactions that can lead to the formation of small colloidal particles that are suspected to migrate through the rock matrix, partially or fully clog pores and microfractures, and promote the mobilization of contaminants. Thus, the goal of this work is to understand the geochemical changes of the host rock in response to reservoir stimulation that promote the formation and migration of colloids. Two different carbonate-rich shales were exposed to different solution pHs (pH = 2 and 7). Iron and other mineral transformations at the shale-fluid interface were first characterized by synchrotron-based XRF mapping. Then, colloids that were able to migrate from the shale into the bulk fluid were characterized by synchrotron-based extended X-ray absorption structure (EXAFS), scanning electron microscopy (SEM), and single-particle inductively coupled plasma time-of-flight mass spectrometry (sp-icpTOF-MS). When exposed to the pH = 2 solution, extensive mineral dissolution and secondary precipitation was observed; iron-(oxyhydr)oxide colloids colocated with silicates were observed by SEM at the fluid-shale interfaces, and the mobilization of chromium and nickel with these iron colloids into the bulk fluid was detected by sp-icpTOF-MS. Iron EXAFS spectra of the solution at the shale-fluid interface suggests the rapid (within minutes) formation of ferrihydrite-like nanoparticles. Thus, we demonstrate that the pH neutralization promotes the mobilization of existing silicate minerals and the rapid formation of new iron colloids. These Fe colloids have the potential to migrate through the shale matrix and mobilize other heavy metals (such as Cr and Ni, in this study) and impacting groundwater quality, as well produced waters from these hydraulic fracturing operations.

2.
Water Res ; 238: 119990, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37146398

ABSTRACT

Fe-rich mobile colloids play vital yet poorly understood roles in the biogeochemical cycling of Fe in groundwater by influencing organic matter (OM) preservation and fluxes of Fe, OM, and other essential (micro-)nutrients. Yet, few studies have provided molecular detail on the structures and compositions of Fe-rich mobile colloids and factors controlling their persistence in natural groundwater. Here, we provide comprehensive new information on the sizes, molecular structures, and compositions of Fe-rich mobile colloids that accounted for up to 72% of aqueous Fe in anoxic groundwater from a redox-active floodplain. The mobile colloids are multi-phase assemblages consisting of Si-coated ferrihydrite nanoparticles and Fe(II)-OM complexes. Ferrihydrite nanoparticles persisted under both oxic and anoxic conditions, which we attribute to passivation by Si and OM. These findings suggest that mobile Fe-rich colloids generated in floodplains can persist during transport through redox-variable soils and could be discharged to surface waters. These results shed new light on their potential to transport Fe, OM, and nutrients across terrestrial-aquatic interfaces.


Subject(s)
Groundwater , Iron , Iron/chemistry , Ferric Compounds , Soil , Colloids/chemistry , Groundwater/chemistry , Oxidation-Reduction , Minerals/chemistry
3.
Environ Sci Technol ; 57(12): 4841-4851, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917499

ABSTRACT

Soil zinc contamination is a major threat to water quality and sensitive ecosystems. While Zn itself is not redox-active in soils, transitions in soil redox conditions may promote mobilization of Zn from common Zn hosts, including Mn(IV)/Fe(III)-(hydr)oxides and sulfide precipitates, leading to elevated concentrations of dissolved Zn in surface and groundwater and thus a potential increase in Zn transport and uptake. Here, we examined the impacts of hydrologic fluctuations and coupled redox transitions on Zn partitioning in contaminated riparian soil in a mountain watershed. We found that oxygenation of the soil profile during low water conditions caused a spike in porewater Zn concentrations, driven by oxidative dissolution of amorphous ZnS and weak partitioning of Zn to Fe(III)-(hydr)oxides, hydroxy-interlayer vermiculite, and vermiculite. In contrast to Pb, released Zn did not immediately adsorb to Fe(III)-(hydr)oxides or particulate organic matter due to less-favorable sorption of Zn than that of Pb and, further, decreased Zn sorption at slightly acidic pH. As aridification intensifies and groundwater levels decline throughout the western United States, contaminated floodplain soils in mountain watersheds may be frequently oxygenated, leading to increased mobilization of dissolved Zn, which will amplify the threat Zn poses to water quality and ecosystem health.


Subject(s)
Ecosystem , Soil Pollutants , Seasons , Ferric Compounds , Lead , Zinc/analysis , Soil , Oxides
4.
Environ Sci Technol ; 57(10): 4354-4366, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36848522

ABSTRACT

Groundwater uranium (U) concentrations have been measured above the U.S. EPA maximum contaminant level (30 µg/L) in many U.S. aquifers, including in areas not associated with anthropogenic contamination by milling or mining. In addition to carbonate, nitrate has been correlated to uranium groundwater concentrations in two major U.S. aquifers. However, to date, direct evidence that nitrate mobilizes naturally occurring U from aquifer sediments has not been presented. Here, we demonstrate that the influx of high-nitrate porewater through High Plains alluvial aquifer silt sediments bearing naturally occurring U(IV) can stimulate a nitrate-reducing microbial community capable of catalyzing the oxidation and mobilization of U into the porewater. Microbial reduction of nitrate yielded nitrite, a reactive intermediate, which was further demonstrated to abiotically mobilize U from the reduced alluvial aquifer sediments. These results indicate that microbial activity, specifically nitrate reduction to nitrite, is one mechanism driving U mobilization from aquifer sediments in addition to previously described bicarbonate-driven desorption from mineral surfaces, such as Fe(III) oxides.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Nitrates , Ferric Compounds , Nitrites , Geologic Sediments , Water Pollutants, Radioactive/analysis
5.
Environ Sci Technol ; 56(20): 14452-14461, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36206030

ABSTRACT

Aquifer groundwater quality is largely controlled by sediment composition and physical heterogeneity, which commonly sustains a unique redox gradient pattern. Attenuation of heavy metals within these heterogeneous aquifers is reliant on multiple factors, including redox conditions and redox-active species that can further influence biogeochemical cycling. Here, we simulated an alluvial aquifer system using columns filled with natural coarse-grained sediments and two domains of fine-grained sediment lenses. Our goal was to examine heavy metal (Ni and Zn) attenuation within a complex aquifer network and further explore nitrate-rich groundwater conditions. The fine-grained sediment lenses sustained reducing conditions and served as a sink for Ni sequestration─in the form of Ni-silicates, Ni-organic matter, and a dominant Ni-sulfide phase. The silicate clay and sulfide pools were also important retention mechanisms for Zn; however, Ni was associated more extensively with organic matter compared to Zn, which formed layered double hydroxides. Nitrate-rich conditions promoted denitrification within the lenses that was coupled to the oxidation of Fe(II) and the concomitant precipitation of an Fe(III) phase with higher structural distortion. A decreased metal sulfide pool also resulted, where nitrate-rich conditions generated an average 20% decrease in solid-phase Ni, Zn, and Fe. Ultimately, nitrate plays a significant role in the aquifer's biogeochemical cycling and the capacity to retain heavy metals.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Clay , Environmental Monitoring/methods , Ferric Compounds , Ferrous Compounds , Geologic Sediments/chemistry , Groundwater/chemistry , Nitrates , Sulfides , Water Pollutants, Chemical/analysis
6.
Rev Sci Instrum ; 93(8): 083101, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050052

ABSTRACT

Here, we describe a new synchrotron X-ray Fluorescence (XRF) imaging instrument with an integrated High Energy Fluorescence Detection X-ray Absorption Spectroscopy (HERFD-XAS) spectrometer at the Stanford Synchrotron Radiation Lightsource at beamline 6-2. The X-ray beam size on the sample can be defined via a range of pinhole apertures or focusing optics. XRF imaging is performed using a continuous rapid scan system with sample stages covering a travel range of 250 × 200 mm2, allowing for multiple samples and/or large samples to be mounted. The HERFD spectrometer is a Johann-type with seven spherically bent 100 mm diameter crystals arranged on intersecting Rowland circles of 1 m diameter with a total solid angle of about 0.44% of 4π sr. A wide range of emission lines can be studied with the available Bragg angle range of ∼64.5°-82.6°. With this instrument, elements in a sample can be rapidly mapped via XRF and then selected features targeted for HERFD-XAS analysis. Furthermore, utilizing the higher spectral resolution of HERFD for XRF imaging provides better separation of interfering emission lines, and it can be used to select a much narrower emission bandwidth, resulting in increased image contrast for imaging specific element species, i.e., sparse excitation energy XAS imaging. This combination of features and characteristics provides a highly adaptable and valuable tool in the study of a wide range of materials.


Subject(s)
Optical Imaging , Synchrotrons , Optics and Photonics , Spectrometry, X-Ray Emission/methods , X-Rays
7.
Anal Chem ; 94(19): 7084-7091, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35512178

ABSTRACT

Small-particle analysis is a highly promising emerging forensic tool for analysis of interdicted special nuclear materials. Integration of microstructural, morphological, compositional, and molecular impurity signatures could provide significant advancements in forensic capabilities. We have applied rapid, high-sensitivity, hard X-ray synchrotron chemical imaging to analyze impurity signatures in two differently fabricated fuel pellets from the 5th Collaborative Materials Exercise (CMX5) of the IAEA Nuclear Forensics International Working Group. The spatial distributions, chemical compositions, and morphological and molecular characteristics of impurities were evaluated using X-ray absorption near-edge structure (XANES) and X-ray fluorescence chemical imaging to discover principal impurities, their granularity, particle sizes, modes of occurrence (distinct grains vs incorporation in the UO2 lattice), and sources and mechanisms of incorporation. Differences in UO2+x stoichiometry were detected at the microscale in nominally identical UO2 ceramics (CMX5-A and CMX5-B), implying the presence of multiple UO2 host phases with characteristic microstructures and feedstock compositions. Al, Fe, Ni, W, and Zr impurities and integrated impurity signature analysis identified distinctly different pellet synthesis and processing methods. For example, two different Al, W, and Zr populations in the CMX5-B sample indicated a more complex processing history than the CMX5-A sample. K-edge XANES measurements reveal both metallic and oxide forms of Fe and Ni but with different proportions between each sample. Altogether, these observations suggest multiple sources of impurities, including fabrication (e.g., force-sieving) and feedstock (mineral oxides). This study demonstrates the potential of synchrotron techniques to integrate different signatures across length scales (angstrom to micrometer) to detect and differentiate between contrasting UO2 fuel fabrication techniques.

8.
Chem Rev ; 122(9): 9198-9263, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35404590

ABSTRACT

Hydraulic fracturing of unconventional oil/gas shales has changed the energy landscape of the U.S. Recovery of hydrocarbons from tight, hydraulically fractured shales is a highly inefficient process, with estimated recoveries of <25% for natural gas and <5% for oil. This review focuses on the complex chemical interactions of additives in hydraulic fracturing fluid (HFF) with minerals and organic matter in oil/gas shales. These interactions are intended to increase hydrocarbon recovery by increasing porosities and permeabilities of tight shales. However, fluid-shale interactions result in the dissolution of shale minerals and the release and transport of chemical components. They also result in mineral precipitation in the shale matrix, which can reduce permeability, porosity, and hydrocarbon recovery. Competition between mineral dissolution and mineral precipitation processes influences the amounts of oil and gas recovered. We review the temporal/spatial origins and distribution of unconventional oil/gas shales from mudstones and shales, followed by discussion of their global and U.S. distributions and compositional differences from different U.S. sedimentary basins. We discuss the major types of chemical additives in HFF with their intended purposes, including drilling muds. Fracture distribution, porosity, permeability, and the identity and molecular-level speciation of minerals and organic matter in oil/gas shales throughout the hydraulic fracturing process are discussed. Also discussed are analysis methods used in characterizing oil/gas shales before and after hydraulic fracturing, including permeametry and porosimetry measurements, X-ray diffraction/Rietveld refinement, X-ray computed tomography, scanning/transmission electron microscopy, and laboratory- and synchrotron-based imaging/spectroscopic methods. Reactive transport and spatial scaling are discussed in some detail in order to relate fundamental molecular-scale processes to fluid transport. Our review concludes with a discussion of potential environmental impacts of hydraulic fracturing and important knowledge gaps that must be bridged to achieve improved mechanistic understanding of fluid transport in oil/gas shales.


Subject(s)
Hydraulic Fracking , Minerals/chemistry , Natural Gas , Oil and Gas Fields , Wastewater/chemistry
9.
Environ Sci Technol ; 56(7): 4336-4344, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35297619

ABSTRACT

Celestite (SrSO4) precipitation is a prevalent example of secondary sulfate mineral scaling issues in hydraulic fracturing systems, particularly in basins where large concentrations of naturally occurring strontium are present. Here, we present a validated and flexible geochemical model capable of predicting celestite formation under such unconventional environments. Simulations were built using CrunchFlow and guided by experimental data derived from batch reactors. These data allowed the constraint of key kinetic and thermodynamic parameters for celestite precipitation under relevant synthetic hydraulic fracturing fluid conditions. Effects of ionic strength, saturation index, and the presence of additives were considered in the combined experimental and modeling construction. This geochemical model was then expanded into a more complex system where interactions between hydraulic fracturing fluids and shale rocks were allowed to occur subject to diffusive transport. We find that the carbonate content of a given shale and the presence of persulfate breaker in the system strongly impact the location and extent of celestite formation. The results of this study provide a novel multicomponent reactive transport model that may be used to guide future experimental design in the pursuit of celestite and other sulfate mineral scale mitigation under extreme conditions typical of hydraulic fracturing in shale formations.


Subject(s)
Hydraulic Fracking , Minerals/chemistry , Natural Gas , Osmolar Concentration , Strontium , Sulfates
10.
J Phys Chem B ; 126(7): 1539-1550, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35138853

ABSTRACT

Understanding the local environment of the metal atoms in salt melts is important for modeling the properties of melts and predicting their behavior and thus helping enable the development of technologies such as molten salt reactors and solar-thermal power systems and new approaches to recycling rare-earth metals. Toward that end, we have developed an in situ approach for measuring the coordination of metals in molten salt coupling X-ray absorption spectroscopy (XAS) and Raman spectroscopy. Our approach was demonstrated for two salt mixtures (1.9 and 5 mol % SrCl2 in NaCl, 0.8 and 5 mol % ZrF4 in LiF) at up to 1100 °C. Near-edge (X-ray absorption near-edge structure, XANES) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The EXAFS response was modeled using ab initio FEFF calculations. Strontium's first shell is observed to be coordinated with chlorine (Sr2+-Cl-) and zirconium's first shell is coordinated by fluorine (Zr4+-F-), both having coordination numbers that decrease with increasing temperature. Multiple zirconium complexes are believed to be present in the melt, which may interfere and distort the EXAFS spectra and result in an anomalously low zirconium first shell coordination number. The use of boron nitride (BN) powder as a salt diluent for XAFS measurements was found to not interfere with measurements and thus can be used for investigations of such systems.

11.
Environ Sci Technol ; 56(4): 2738-2746, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35072465

ABSTRACT

Sediment interfaces in alluvial aquifers have a disproportionately large influence on biogeochemical activity and, therefore, on groundwater quality. Previous work showed that exports from fine-grained, organic-rich zones sustain reducing conditions in downstream coarse-grained aquifers beyond the influence of reduced aqueous products alone. Here, we show that sustained anaerobic activity can be attributed to the export of organic carbon, including live microorganisms, from fine-grained zones. We used a dual-domain column system with ferrihydrite-coated sand and embedded reduced, fine-grained lenses from Slate River (Crested Butte, CO) and Wind River (Riverton, WY) floodplains. After 50 d of groundwater flow, 8.8 ± 0.7% and 14.8 ± 3.1% of the total organic carbon exported from the Slate and Wind River lenses, respectively, had accumulated in the sand downstream. Furthermore, higher concentrations of dissolved Fe(II) and lower concentrations of dissolved organic carbon in the sand compared to total aqueous transport from the lenses suggest that Fe(II) was produced in situ by microbial oxidation of organic carbon coupled to iron reduction. This was further supported by an elevated abundance of 16S rRNA and iron-reducing (gltA) gene copies. These findings suggest that organic carbon transport across interfaces contributes to downstream biogeochemical reactions in natural alluvial aquifers.


Subject(s)
Groundwater , Water Pollutants, Chemical , Carbon , Ferrous Compounds , Groundwater/chemistry , Iron , RNA, Ribosomal, 16S , Sand , Water Pollutants, Chemical/analysis
12.
ISME J ; 16(4): 1140-1152, 2022 04.
Article in English | MEDLINE | ID: mdl-34873295

ABSTRACT

The terrestrial subsurface microbiome contains vastly underexplored phylogenetic diversity and metabolic novelty, with critical implications for global biogeochemical cycling. Among the key microbial inhabitants of subsurface soils and sediments are Thaumarchaeota, an archaeal phylum that encompasses ammonia-oxidizing archaea (AOA) as well as non-ammonia-oxidizing basal lineages. Thaumarchaeal ecology in terrestrial systems has been extensively characterized, particularly in the case of AOA. However, there is little knowledge on the diversity and ecophysiology of Thaumarchaeota in deeper soils, as most lineages, particularly basal groups, remain uncultivated and underexplored. Here we use genome-resolved metagenomics to examine the phylogenetic and metabolic diversity of Thaumarchaeota along a 234 cm depth profile of hydrologically variable riparian floodplain sediments in the Wind River Basin near Riverton, Wyoming. Phylogenomic analysis of the metagenome-assembled genomes (MAGs) indicates a shift in AOA population structure from the dominance of the terrestrial Nitrososphaerales lineage in the well-drained top ~100 cm of the profile to the typically marine Nitrosopumilales in deeper, moister, more energy-limited sediment layers. We also describe two deeply rooting non-AOA MAGs with numerous unexpected metabolic features, including the reductive acetyl-CoA (Wood-Ljungdahl) pathway, tetrathionate respiration, a form III RuBisCO, and the potential for extracellular electron transfer. These MAGs also harbor tungsten-containing aldehyde:ferredoxin oxidoreductase, group 4f [NiFe]-hydrogenases and a canonical heme catalase, typically not found in Thaumarchaeota. Our results suggest that hydrological variables, particularly proximity to the water table, impart a strong control on the ecophysiology of Thaumarchaeota in alluvial sediments.


Subject(s)
Archaea , Metagenomics , Ammonia/metabolism , Archaea/metabolism , Geologic Sediments , Oxidation-Reduction , Phylogeny , Soil
13.
Environ Sci Technol ; 55(9): 5878-5886, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33899483

ABSTRACT

Lead contamination in soils and sediments is a major threat to water quality. In surface and near-surface environments, Pb is not redox active; however, common Pb hosts, including Fe(III)-(hydr)oxides and sulfides, dissolve and precipitate as redox conditions change. Dissolution of Pb hosts may release Pb to porewater, leading to spikes in dissolved Pb concentrations and potential transport into surface or groundwater. Here, we examine the impacts of hydrologically coupled redox transitions on Pb partitioning in contaminated floodplain soils. We find that the affinity of Pb for particulate organic matter (POM), inclusive of mineral-associated organic matter, ensures that across redox transitions Pb is retained in the solid phase, despite host-phase (Fe(III)-(hydr)oxide and sulfide) dissolution. As seasonal hydrologic dynamics shift porewater redox conditions, Pb-bearing Fe(III)-(hydr)oxides (Pb-HFO) and sulfides (PbS) are dissolved and (re)precipitated. However, despite these shifts in redox conditions and associated host-phase transformations, Pb retention on POM, coupled with the formation of PbS and Pb-HFO, maintains dissolved Pb concentrations below 17 µg L-1. Importantly, the predominance of Pb adsorbed on POM alongside low dissolved Pb concentrations indicates that Pb released from HFO and PbS is retained by POM. Thus, despite host-phase dissolution during redox transitions, partitioning of Pb to the aqueous phase is minimal and, therefore, transport of dissolved Pb is unlikely.


Subject(s)
Iron , Lead , Lead/analysis , Oxidation-Reduction , Particulate Matter , Soil , Sulfides
14.
Environ Sci Technol ; 55(5): 2939-2948, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33570404

ABSTRACT

Alluvial aquifers serve as one of the main water sources for domestic, agricultural, and industrial purposes globally. Groundwater quality, however, can be threatened by naturally occurring and anthropogenic metal contaminants. Differing hydrologic and biogeochemical conditions between predominantly coarse-grained aquifer sediments and embedded layers or lenses of fine-grained materials lead to variation in metal behavior. Here, we examine processes controlling Zn partitioning within a dual-pore domain-reconstructed alluvial aquifer. Natural coarse aquifer sediments from the Wind River-Little Wind River floodplain near Riverton, WY, were used in columns with or without fine-grained lenses to examine biogeochemical controls on Zn concentrations, retention mechanisms, and transport. Following the introduction of Zn to the groundwater source, Zn preferentially accumulated in the fine-grained lenses, despite their small volumetric contributions. While the clay fraction dominated Zn retention in the sandy aquifer, the lenses supported additional reaction pathways of retention-the reducing conditions within the lenses resulted in ZnS precipitation, overriding the contribution of organic matter. Zinc concentration in the groundwater controlled the formation of Zn-clays and Zn-layered double hydroxides, whereas the extent of sulfide production controlled precipitation of ZnS. Our findings illustrate how both spatial and compositional heterogeneities govern the extent and mechanisms of Zn retention in intricate groundwater systems, with implications for plume behavior and groundwater quality.


Subject(s)
Groundwater , Water Pollutants, Chemical , Organic Chemicals , Rivers , Water Pollutants, Chemical/analysis , Zinc
15.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33479173

ABSTRACT

The long-term fate of uranium-contaminated sediments, especially downstream former mining areas, is a widespread environmental challenge. Essential for their management is the proper understanding of uranium (U) immobilization mechanisms in reducing environments. In particular, the long-term behavior of noncrystalline U(IV) species and their possible evolution to more stable phases in subsurface conditions is poorly documented, which limits our ability to predict U long-term geochemical reactivity. Here, we report direct evidence for the evolution of U speciation over 3,300 y in naturally highly U-enriched sediments (350-760 µg ⋅ g-1 U) from Lake Nègre (Mercantour Massif, Mediterranean Alps, France) by combining U isotopic data (δ238U and (234U/238U)) with U L3 -edge X-ray absorption fine structure spectroscopy. Constant isotopic ratios over the entire sediment core indicate stable U sources and accumulation modes, allowing for determination of the impact of aging on U speciation. We demonstrate that, after sediment deposition, mononuclear U(IV) species associated with organic matter transformed into authigenic polymeric U(IV)-silica species that might have partially converted to a nanocrystalline coffinite (UIVSiO4·nH2O)-like phase. This diagenetic transformation occurred in less than 700 y and is consistent with the high silica availability of sediments in which diatoms are abundant. It also yields consistency with laboratory studies that proposed the formation of colloidal polynuclear U(IV)-silica species, as precursors for coffinite formation. However, the incomplete transformation observed here only slightly reduces the potential lability of U, which could have important implications to evaluate the long-term management of U-contaminated sediments and, by extension, of U-bearing wastes in silica-rich subsurface environments.

16.
J Hazard Mater ; 412: 125089, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33517059

ABSTRACT

Uranium minerals are commonly found in soils and sediment across the United States at an average concentration of 2-4 mg/kg. Uranium occurs in the environment primarily in two forms, the oxidized, mostly soluble uranium(VI) form, or the reduced, sparingly soluble reduced uranium(IV) form. Here we describe subsurface geochemical conditions that result in low uranium concentrations in an alluvial aquifer with naturally occurring uranium in soils and sediments in the presence of complexing ligands under oxidizing conditions. Groundwater was saturated with respect to calcite and contained calcium (78-90 mg/L) with elevated levels of carbonate alkalinity (291-416 mg/L as HCO3-). X-ray adsorption near edge structure (XANES) spectroscopy identified that sediment-associated uranium was oxidized as a uranium(VI) form (85%). Calcite was the predominant mineral by mass in the ultrafine fraction in uranium-bearing sediments (>16 mg/kg). Groundwater geochemical modeling indicated calcite and/or a calcium-uranyl-carbonate mineral such as liebigite in equilibrium with groundwater. The δ13C (0.57‰ ± 0.15‰) was indicative of abiotic carbonate deposition. Thus, solid-phase uranium(VI) associated with carbonate is likely maintaining uranium(VI) groundwater levels below the maximum contaminant level (MCL; 30 µg/L), presenting a deposition mechanism for uranium attenuation rather than solely a means of mobilization.

17.
Microb Ecol ; 80(4): 778-792, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32535638

ABSTRACT

Subsurface microbial communities mediate biogeochemical transformations that drive both local and ecosystem-level cycling of essential elements, including nitrogen. However, their study has been largely limited to the deep ocean, terrestrial mines, caves, and topsoils (< 30 cm). Here, we present regional insights into the microbial ecology of aerobic ammonia oxidation within the terrestrial subsurface of five semi-arid riparian sites spanning a 900-km N-S transect. We sampled sediments, profiled communities to depths of ≤ 10 m, and compared them to reveal trends regionally within and surrounding the Upper Colorado River Basin (CRB). The diversity and abundance of ammonia-oxidizing microbial communities were evaluated in the context of subsurface geochemistry by applying a combination of amoA (encoding ammonia monooxygenase subunit A) gene sequencing, quantitative PCR, and geochemical techniques. Analysis of 898 amoA sequences from ammonia-oxidizing archaea (AOA) and bacteria (AOB) revealed extensive ecosystem-scale diversity, including archaeal amoA sequences from four of the five major AOA lineages currently found worldwide as well as distinct AOA ecotypes associated with naturally reduced zones (NRZs) and hydrogeochemical zones (unsaturated, capillary fringe, and saturated). Overall, AOA outnumber AOB by 2- to 5000-fold over this regional scale, suggesting that AOA may play a prominent biogeochemical role in nitrification within terrestrial subsurface sediments.


Subject(s)
Ammonia/metabolism , Archaea/physiology , Microbiota/physiology , Soil Microbiology , Archaea/isolation & purification , Colorado , Ecosystem , Floods , New Mexico , Oxidation-Reduction , Wyoming
18.
Environ Sci Technol ; 54(12): 7320-7329, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32401022

ABSTRACT

Uranium and other radionuclides are prominent in many unconventional oil/gas shales and is a potential contaminant in flowback/produced waters due to the large volumes/types of chemicals injected into the subsurface during stimulation. To understand the stability of U before and after stimulation, a geochemical study of U speciation was carried out on three shales (Marcellus, Green River, and Barnett). Two types of samples for each shale were subjected to sequential chemical extractions: unreacted and shale-reacted with a synthetic hydraulic fracture fluid. A significant proportion of the total U (20-57%) was released from these three shales after reaction with fracture fluid, indicating that U is readily leachable. The total U released exceeds labile water-soluble and exchangeable fractions in unreacted samples, indicating that fluids leach more recalcitrant phases in the shale. Radiographic analysis of unreacted Marcellus shale thin sections shows U associated with detrital quartz and the clay matrix in the shale. Detrital zircon and TiO2 identified by an electron microprobe could account for the hot spots. This study shows that significant proportions of U in three shales are mobile upon stimulation. In addition, the extent of mobilization of U depends on the U species in these rocks.


Subject(s)
Hydraulic Fracking , Uranium , Minerals , Natural Gas , Oil and Gas Fields , Uranium/analysis , Wastewater
19.
Environ Sci Technol ; 54(10): 6021-6030, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32315524

ABSTRACT

Reaction conditions and mechanisms promoting or inhibiting U reduction exert a central control on U solubility and, therefore, U transport and its associated risks. Here, we vary and track common aqueous uranium species to show that a kinetic restriction inhibits homogeneous reduction of the calcium-uranyl-carbonato species (CaUO2(CO3)32- and Ca2UO2(CO3)3) by Fe(II)(aq), while ferrihydrite surface-catalyzed reduction of all aqueous uranyl by Fe(II) proceeds. Using U L3 high energy resolution fluorescence detection (HERFD) X-ray absorption near edge structure (XANES) spectroscopy, U L3 extended X-ray absorption fine structure (EXAFS) spectroscopy, and transmission electron microscopy (TEM), we also show that U(V) is generated and incorporated into ferrihydrite formed from homogeneous U(VI) reduction by Fe(II)(aq). Through elucidation of the mechanisms that inhibit reduction of the calcium-uranyl-carbonato species and promote stabilization of U(V), we advance our understanding of the controls on U solubility and thus improve prediction of U transport in surface and subsurface systems.


Subject(s)
Calcium , Uranium , Ferric Compounds , Ferrous Compounds , Oxidation-Reduction
20.
Environ Sci Technol ; 54(6): 3237-3244, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32069033

ABSTRACT

Groundwater contamination by As from natural and anthropogenic sources is a worldwide concern. Redox heterogeneities over space and time are common and can influence the molecular-level speciation of As, and thus, As release/retention but are largely unexplored. Here, we present results from a dual-domain column experiment, with natural organic-rich, fine-grained, and sulfidic sediments embedded as lenses (referred to as "reducing lenses") within natural aquifer sand. We show that redox interfaces in sulfur-rich, alkaline aquifers may release concerning levels of As, even when sediment As concentration is low (<2 mg/kg), due to the formation of mobile thioarsenates at aqueous sulfide/Fe molar ratios <1. In our experiments, this behavior occurred in the aquifer sand between reducing lenses and was attributed to the spreading of sulfidic conditions and subsequent Fe reductive dissolution. In contrast, inside reducing lenses (and some locations in the aquifer) the aqueous sulfide/Fe molar ratios exceeded 1 and aqueous sulfide/As molar ratios exceeded 100, which partitioned As(III)-S to the solid phase (associated with organics or as realgar (As4S4)). These results highlight the importance of thioarsenates in natural sediments and indicate that redox interfaces and sediment heterogeneities could locally degrade groundwater quality, even in aquifers with unconcerning solid-phase As concentrations.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Geologic Sediments , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...